FedICT: Federated Multi-task Distillation for Multi-access Edge Computing
نویسندگان
چکیده
The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning Multi-access Edge Computing (MEC). Diverse user behaviors call personalized with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task (FMTL) is proposed train related but ML devices, whereas previous works suffer from excessive communication overhead during training neglect model heterogeneity among MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient clients, existing methods rely a public dataset, which impractical reality. To tackle this dilemma, MultI-task Distillation CompuTing (FedICT) proposed. FedICT direct local-global aloof bi-directional processes between clients server, aiming multi-task while alleviating client drift derived divergent optimization directions client-side local models. Specifically, includes Prior Knowledge (FPKD) Local Adjustment (LKA). FPKD reinforce clients' fitting data by introducing prior distributions. Moreover, LKA correct loss making transferred better match generalized representation. Experiments three datasets show that significantly outperforms all compared benchmarks various architecture settings, achieving improved accuracy less than 1.2% FedAvg no more 75% round FedGKT.
منابع مشابه
Federated Multi-Task Learning
Federated learning poses new statistical and systems challenges in training machinelearning models over distributed networks of devices. In this work, we show thatmulti-task learning is naturally suited to handle the statistical challenges of thissetting, and propose a novel systems-aware optimization method, MOCHA, that isrobust to practical systems issues. Our method and theor...
متن کاملReliable Distributed Authentication in Multi-Access Mobile Edge Computing
The fifth generation (5G) mobile telecommunication network is expected to support multi-access mobile edge computing (MEC), which intends to distribute computation tasks and services from the central cloud to the edge clouds. Towards ultraresponsive, ultra-reliable and ultra-low-latency MEC services, the current mobile network security architecture should enable more decentralized approach for ...
متن کاملJoint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks
Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobil...
متن کاملtight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولGPU-accelerated Video Transcoding Unit for Multi-access Edge Computing Scenarios
The exponential growth of video traffic and the outburst of novel video-based services is revealing the inadequacy of the traditional mobile network infrastructure. To respond to this and to many other demands coming from today’s society, the 5G and the Multi-access Edge Computing (MEC) initiatives are proposing novel network architectures. In this context, this paper proposes the Video Transco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Parallel and Distributed Systems
سال: 2023
ISSN: ['1045-9219', '1558-2183', '2161-9883']
DOI: https://doi.org/10.1109/tpds.2023.3289444